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Using a limiting approach to portfolio credit risk, we obtain analytic expressions for the tail behavior of credit

losses. To capture the co-movements in defaults over time, we assume that defaults are triggered by a general,

possibly non-linear, factor model involving both systematic and idiosyncratic risk factors. The model encompasses

default mechanisms in popular models of portfolio credit risk, such as CreditMetrics and CreditRiskz. We show

how the tail characteristics of portfolio credit losses depend directly upon the factor model’s functional form and

the tail properties of the model’s risk factors. In many cases the credit loss distribution has a polynomial (rather

than exponential) tail. This feature is robust to changes in tail characteristics of the underlying risk factors. Finally,

we show that the interaction between portfolio quality and credit loss tail behavior is strikingly different between

the CreditMetrics and CreditRiskz approach to modeling portfolio credit risk.

Keywords: portfolio credit risk, extreme value theory, tail events, tail index, factor models, economic capital,

portfolio quality, second-order expansions

, JEL Codes: G21, G33, G29, C19

1. Introduction

Management of credit risk is a core function within banks and other lending institutions. There is an

extensive literature on how to assess the credit quality of counter-parties in individual loan (or bond)
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transactions, see for example Altman (1983), Caouette et al. (1998), and the Journal of Banking and

Finance (2001, 25(1)) as starting references. In recent years, we have witnessed an increased interest in

the modelling and management of portfolio credit risk. The portfolio view on credit risk focuses on the

probability distribution of potential credit losses for portfolios of loans rather than for individual

loans. This requires the consideration of co-movements in loan defaults, i.e. default correlations. In this

paper we concentrate on the tail behaviour of portfolio credit losses. Clearly, this is the part of the

distribution that both banks and regulators are most concerned about.

Banks usually get into trouble when in a short period of time a substantial part of the loan portfolio

deteriorates significantly in quality. This can typically be traced back to some common cause, e.g. a

downturn in the economy of a country or region or problems in a particular industry sector, see also

Nickell et al. (2000) and Bangia et al. (2002). Recent examples are the banking problems in Japan, the

Asian crisis, and the Russian meltdown. A bank is much less vulnerable to such systematic events if

its loan portfolio is well diversified over regions, countries and industries. To evaluate and manage a

bank’s credit risk, it is therefore not sufficient to scrutinize individual clients to which loans are

extended, but also to identify concentration of risks within the portfolio. Portfolio credit risk models

allow banks to do just that.

Banks also employ portfolio credit risk models to evaluate activities on a risk/reward basis, using

measures such as risk-adjusted return on capital (RAROC) and economic-value-added (EVA); see

Matten (2000). Such an evaluation can be done at the level of individual loans or clients, lines of

business, or for the bank as a whole. In addition, portfolio credit risk models can be used to evaluate

the risks and merits of collateralized loan or bond obligations. A major reason for banks to enter into

such structures is to obtain regulatory capital relief. In many cases, however, the majority of the

economic risk of the loans involved remains with the issuing bank. A primary motivation for the

current review of the 1988 Basel Accord on regulatory capital is to better align regulatory capital

requirements with true economic risk. In its latest proposals, the Bank for International Settlements

(BIS) has in fact used a portfolio credit risk approach to set risk weights for individual counter-parties

(BIS, 2001).

Several models have been put forward in the literature to capture the salient features of portfolio

credit risk. The most prominent models are CreditMetrics of Gupton et al. (1997), CreditRiskz

of Credit Suisse (1997), PortfolioManager of KMV (Kealhofer, 1995), and CreditPortfolio View of

McKinsey (Wilson, 1997a,b). Despite the apparent differences between these approaches, they exhibit a

common underlying framework (Koyluoglu and Hickman, 1998; Gordy, 2000). All models enable the

computation or simulation of a probability distribution of credit losses at the portfolio level. The

extreme upper quantiles of this distribution are of particular interest.

The explicit relation between model parameters and credit loss tail behaviour is generally badly

understood. In the present paper we formulate a general modelling framework encompassing the

models mentioned above. In this framework we derive an explicit characterization of the extreme tail

behaviour of credit losses in terms of underlying portfolio characteristics. Our approach extends the

results in Lucas et al. (2001) and contrasts with previous studies of the behaviour of aggregate credit

risk. For example, Carey (1998) uses a large database of bonds and a resampling scheme in order to

investigate the tail behaviour of credit loss distributions. This approach, however, does not provide an

explicit relation between default correlations and credit loss tail behaviour. Moreover, all results are

conditional on the extent to which the database used is representative of an actual bond or loan
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portfolio. Alternatively, Gupton et al. (1997) uses an explicit modelling framework and a simulation

set-up. The main drawback of a simulation approach is that it is difficult to obtain reliable conclusions

regarding tail behaviour, especially if one is concerned with extreme quantiles. Moreover, many

different experiments would have to be set up in order to obtain tail properties under a variety of

empirically relevant conditions. By contrast, our analytic approach allows for a direct assessment of

the relation between default correlations, credit quality, distributional properties, model structure, and

credit loss tail behaviour.

Two papers closely related and complementary to our approach are Frey and McNeil (2001, 2002).

These authors give a general characterization of different models for dependent defaults. Their focus is

on model characterization and identification, especially with regard to the use of default versus asset

correlations for model calibration purposes. Our current paper complements these results by taking a

more detailed look at the extreme tail behaviour of portfolio credit losses for a specific class of factor

models.

In line with the literature, we decompose the risk of an individual loan into a systematic and

idiosyncratic risk component. Existing models fully parameterize the distribution of the risk

components. For example, CreditMetrics assumes normal risk components, whereas CreditRiskz

assumes gamma distributed components. For our purpose of studying the tail behaviour of portfolio

credit losses, however, it suffices to make weak assumptions on the probability of extreme realizations

of the risk factors. Put differently, to specify the tail behaviour of portfolio credit losses, we do not

need to specify the complete distribution of the underlying risk factors, but only their extreme tail

behaviour. This allows for much less restrictive assumptions. In addition, we allow risk factors to be

related in a general, possibly non-linear way to a counter-party’s creditworthiness. Using statistical

Extreme Value Theory, we obtain an expansion of the tail of the credit loss distribution.

Our main contributions to the portfolio credit risk literature are the general modelling framework

and the analytic results. It turns out that under quite general conditions credit losses have a polynomial

(i.e. fat) rather than an exponential (thin) tail. This polynomial tail can be characterized by a single

parameter, the so-called tail index. The tail index specifies the rate of decay in the tail probability. The

larger the tail index, the faster the tail probability declines to zero. We show how assumptions on the

extreme tail behaviour of the idiosyncratic and systematic risk components determine the extreme

credit loss tail behaviour, i.e. the value of the tail index. In particular, we prove that thin tails for

idiosyncratic risk and fat tails for systematic risk produce rather unconventional shapes of credit loss

densities: they may be actually increasing near the upper end of the support. To the best of our

knowledge, such behaviour has not been reported earlier. These rather peculiar density shapes typically

contain much more probability mass in the tails compared to a well behaved density function whose

tails decline—either exponentially or polynomially—towards the upper end of the credit loss support.

Thus, if risk managers do not acknowledge the possibility that their credit portfolio losses may behave

like this, they might very well severely underestimate the potential for extreme credit losses.1 The

implication of this result can also be put the other way around. If it is hard to estimate the extreme

value behaviour of systematic and idiosyncratic credit risk factors empirically (which is plausible given

the quality of data commonly available), care should be taken in interpreting quantile estimates for

portfolio credit losses, such as high confidence credit VaRs. In such cases extensive sensitivity analyses

1 See for example Embrechts et al. (1997) or McNeil (1999) for the link between tail behaviour and estimation of risk measures

such as credit VaRs, i.e. high confidence quantiles of the credit loss distribution.
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of the portfolio results with respect to the tail assumptions of the underlying riskfactors are

indispensable in applied work.

We also investigate how credit quality as measured by the probability of default relates to the credit

loss tail index. It turns out that credit quality affects the tail behaviour of credit losses differently in the

CreditMetrics frame-work compared to CreditRiskz, which are two of the most popular portfolio

models to study portfolio credit risk. More specifically, the probability of default directly affects the

rate of tail decay as measured by the tail index in the CreditRiskz model (first-order effect). For the

CreditMetrics framework, by contrast, the default probability only affects the scale parameter of the

credit losses while leaving the tail index unchanged (second-order effect).

The set-up of the paper is as follows. In Section 2 we provide the basic modelling framework

and derive the main results for a homogeneous bond portfolio. We also treat the CreditMetrics

and CreditRiskz models as special cases. The results are generalized in Section 3 to heterogeneous

portfolios. Section 4 contains a second-order approach to the tail behaviour of a double Gaussian

latent factor model. We highlight the differences between the CreditMetrics and the CreditRiskz

approach regarding the interaction between portfolio credit quality and tail behaviour. Section 5

concludes, while the Appendix gathers all the proofs.

2. Homogeneous bond portfolios

We start our exposition with a very simple portfolio containing n bonds (or loans), each from (to) a

different company.2 The portfolio is homogeneous in the sense that all bonds have the same

characteristics. This restrictive setting allows us to derive the main results on the tail behavior of

portfolio credit losses. In later sections, we generalize these results to heterogeneous portfolios.

Each bond in the portfolio specifies a future pay-off stream of coupons and/or principal. The value

of this stream depends on the creditworthiness of the company issuing the bond. The value of an

identical stream of future cash flows will be lower if the company is more likely to default, i.e. has a

lower creditworthiness. In our benchmark setting, each company j, where j~1, …, n, is characterized

by a two-dimensional vector

Sj, s
�� �

ð1Þ
Here, Sj is a latent variable that triggers a company’s default. A prime candidate for Sj is the

company’s ‘surplus’ or equity value, i.e. the difference in market value of assets and liabilities, as in the

framework of Merton (1974). Other interpretations, however, are also possible; see for example Jarrow

and Turnbull (1995) and Duffie and Singleton (1999). If the surplus Sj falls below the threshold s*,

default occurs. As our focus in the present paper is on extreme tail behaviour of credit losses, we

concentrate on defaults only and abstract from credit losses due to credit rating migrations, see

Gupton et al. (1997). Further, for simplicity we set the recovery rate to 0, implying that the loss given

default is 100%. This means that in the case of default, the complete amount invested is lost.

Alternatively, one can use more realistic values like historical averages of recovery rates. This, however,

2 We focus on bonds and loans for expositional purposes, but the basic modelling framework remains applicable in case of

alternative credit risky securities.
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does not affect the rate of tail decay of portfolio credit losses as derived later on. We assume that the

initial value of each bond is unity (i.e. each bond values to par at the start). The credit loss on an

individual bond j is now given by the random variable

1 Sj<s�f g ð2Þ

where 1A is the indicator function of the set A.

We assume that Sj obeys the general factor model

Sj~g f , ej
� �

ð3Þ
where f is a common factor, ej is a firm-specific risk factor, and g(e,e) defines the functional form of the

factor model. In this section, we restrict the factor model to be the same for each firm j. This

assumption is relaxed in the next section. The formulation in (3) comprises the well-known factor

models from the literature. For example, if we set g( f, ej)~bfzej for some factor loading b [R with

Gaussian f and ej, we obtain a one-factor version of the CreditMetrics model introduced by Gupton

et al. (1997). In our present static context, this also coincides with the formulation of

CreditPortfolioView of McKinsey (Wilson, 1997a,b). Alternatively, if g( f, ej)~ej/(bf ) with bw0 and

ej and f exponentially and Gamma distributed, respectively, we obtain the CreditRiskz specification of

Credit Suisse as given in Gordy (2000), compare Credit Suisse (1997).

For sake of simplicity we consider a one-factor version of (3) only. Some results for linear multi-

factor models are given in Lucas et al. (2001). The key ingredient in (3) is the common risk factor f.

The functional dependence of all Sj on this common f induces nonzero asset correlations in the

underlying surplus variables that eventually trigger default. Consequently, the model also generates

nonzero default correlations. For example, average default rates can be much higher during recessions

than during booms, a stylized fact that can be captured by an adequate choice of f.

Given the formulation of the individual credit losses in (2), the credit loss for a portfolio of n loans

expressed as a fraction of the amount invested is given by

Cn~n{1
Xn
j~1

1 Sj<s�f g ð4Þ

Looking at the extreme tail behaviour of Cn is rather trivial as the support of Cn is discrete. We obtain

a continuous credit loss distribution only if we let the number of loans n go to infinity, as in Lucas

et al. (2001). We follow this approach as it allows us to establish explicit links between the default

correlations (as implied by the asset correlation parameter r) and credit loss tail thickness.3 Define

C~ lim
n??

Cn ð5Þ

where the limit exists almost surely, see Theorem 1 further below. Note that a ‘standard’ central limit

theorem to (5) is not applicable due to the common dependence on f for every Sj. As shown in

Theorem 1, the limiting credit loss C only depends on the systematic risk factor f and not on the

idiosyncratic risk factors ej. Using the formulation in (5) rather than (4), we therefore limit the number

of stochastic components considerably. This facilitates the study of the tail behaviour of credit losses.

3 The introduction of stochastic recovery rates can also make the credit loss distribution continuous for finite n, but this would not

provide the desired insight into the relation between default correlations and credit loss tail behavior. Indeed, the extreme tail

behaviour of portfolio credit losses would be directly equal to the assumed tail behaviour for the recovery rates.
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As was shown in Lucas et al. (2001), empirically relevant quantiles of Cn, e.g. 99% or 99.9%, can be

approximated well by quantiles of C, provided the credit portfolio contains at least a few hundred

exposures (n§300) that are sufficiently granular. These values of n are quite small given the usually

large numbers of exposures in typical bank portfolios. Thus we may safely assume that this

requirement is satisfied in many situations of empirical interest.

We now introduce our key assumptions on the factor model g(e,e) and the risk factors f and ej. For

expositional purposes, we again use more restrictive assumptions than necessary. In the discussion of

the assumptions, we point out which conditions can be relaxed. Some of these relaxations are worked

out in later sections. We use the notation F̄(x)~12F(x), where F(e) is a distribution function.

Assumption 1 (i) ej
� �?

j~1
is an i.i.d. sequence that is independent of f.

(ii) g is monotonically increasing in both its arguments, such that for all s in the range of g there

exist inverse functions ~ee :,:ð Þ and ~ff :,:ð Þ defined4 implicitly by

(iii) The supports of ej and f are unbounded to the right and left, respectively. Furthermore, for all s

we have limx:?
~ff s, xð Þ~{?, and limx;{? ~ee x, sð Þ~?.

Part (i) of the assumption is standard. The identically distributed requirement is less crucial and will

be relaxed in the next section. Part (ii) of Assumption 1 requires the factor model to be increasing in

the risk factors. The focus on increasing g is not very restrictive per se. For example, the specification of

CreditRiskz (Sj~ej/(bf )) does not satisfy the assumption directly, as it is decreasing in f. If this is the

case, however, we can usually easily transform variables and consider g( f *, ej) with f *~2f, which is

increasing in f *. The additional condition in part (ii) requires invertibility of the factor model g. The

inverses must be well defined and lie in the appropriate supports of the original risk factors. In

particular, we only consider factor models from which we can always uniquely retrieve an element from

the vector (Sj, f, ej) given the other two elements. Note that both the linear CreditMetrics model

(Sj~bfzej with Sj, f, and ej in R) and the multiplicative CreditRiskz model (Sj~ej/(bf ) with Sj, f, and

ej in Rz) satisfy this criterion. Part (iii) states that the supports of f and the ej are unbounded from

below and above, respectively. This assumption is not crucial, but greatly simplifies subsequent

notation. Again, there is no loss in generality as situations with a bounded support can be

accommodated by an appropriate change of variables. The last part of condition (iii) has the following

intuition. Consider the borderline case where a firm j is almost pushed into bankruptcy. If common

risk factors ( f ), e.g. the state of the business cycle, are extremely adverse, then firm-specific conditions

(ej) have to be extremely favorable to prevent the firm from going bankrupt. We thus exclude

bankruptcies that are solely induced by adverse values of f regardless of firm-specific risk ej (or vice

versa).

A second set of assumptions constrains the different types of tail behaviour for the risk factors f and

ej. In studying the tail behaviour of aggregate credit losses we will either start from polynomially

declining tails for the underlying risk components (Assumption 2A) or exponentially declining tails

4 Note that one should carefully distinguish between the random variables f and e and the implicit functions ~ff :,:ð Þ and ~ee :,:ð Þ.

s~g ~ff s, eð Þ, e
� �

~g ~ff , ~ee f , sð Þ
� �
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(Assumption 2B). Let F(e) and G(e) denote the (almost everywhere continuously differentiable)

distribution functions of ej and f, respectively.

Assumption 2A (i) Let F(e) denote the (almost everywhere continuously differentiable) distribution

function of ej. Then F(e) has a right-hand tail expansion of the form

�FF xð Þ~x{n:L1 xð Þ ð6Þ
where L1(e) is a slowly varying function for x p ‘.

Similarly, let G(e) denote the distribution function of f. Then G(e) has a left-hand tail expansion of

the form

G xð Þ~ {xð Þ{m:L2 xð Þ ð7Þ
with L2(e) a slowly varying function for x p 2‘.

(ii) The function x . {~ff s�, xð Þ is regularly varying at infinity with index f1w0, so

{~ff s�, xð Þ~xf1Lf xð Þ, with Lf slowly varying.

Note that n1 and m1 can be interpreted as the tail indices of the risk factors ej and f, respectively.

Assumptions 2A places further restrictions on the stochastic behaviour of f and ej and on the factor

model g. It states that f and ej have polynomial left-hand and right-hand tails, respectively. Note that

we only make assumptions about the extreme tail behaviour of these random variables. By contrast,

both CreditMetrics and CreditRiskz make much more restrictive assumptions by specifying the

complete stochastic behaviour of the risk factors. Using part (i) of Assumption 2A, we allow for any

tail shape that lies in the domain of attraction of a Fréchet (or a Weibull) law (Embrechts et al., 1997).

An example of this is a distribution with polynomial tails, e.g. the Student t distribution. Part (ii)

of Assumption 2A further limits the number of allowed factor model specifications. For example

the specification g( f, ej)~ej exp( f ) is not allowed as it is ‘not balanced’ in f and ej. Again, such

unbalancedness can usually be resolved by an appropriate change of variables.

To state the appropriate conditions for exponential rather than polynomial tails, we introduce the

class of functions Ma hð Þ.

Definition 1 The class Ma hð Þ for a [ {?, z?½ � and h [ R consists of measurable functions

x : R p R such that

(i) limxpa x(x)/xh exists and is finite;

(ii) limxpa xx’(x)/x(x)~h.

We will only use the cases a~0 and a~¡‘ for Ma hð Þ. Notice that x [ Ma hð Þ if and only if

x . x xð Þ
�
xh [ Ma 0ð Þ. If a function x is regularly varying at infinity with index h and satisfies that for

some real number B we have x xð Þ~x Bð Þz
Ð x
B
x0 tð Þdt for all xwa with x’ ultimately monotone, then it

follows from Theorem 2.4 of Seneta (1976) that xx’(x)/x(x) p h for x p ‘. But then, we also have

x [ M? hð Þ under the additional condition that limxp‘ x(x)/xh exists and is finite. Also notice also if

x(x)~xhL(x), then x [ M? hð Þ if and only if L [ M? 0ð Þ. Imposing the condition that a function x

belongs to M? hð Þ can be viewed as strengthening the representation of regularly varying functions in

the sense that we can now write x xð Þ~cBx
h exp

Ð x
B

x uð Þ
u

du
� �

for all x greater than or equal to some

number B, where limxp‘ x(x)~0, see Theorem 1.2 in Seneta (1976) and equation (1.5.1) in Bingham

et al. (1987). It will prove later that this class of functions is very useful for focusing on tail behaviour.
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Assumption 2B (i) As opposed to Assumption 2A, the right-hand tail expansion of F(e) has the

form

�FF xð Þ~ exp n1x
n2 1zx xð Þð Þð Þ ð8Þ

with n1v0, n2w0, limxp‘ x(x)~0 and 1zx [ M? 0ð Þ. Similarly, the left-hand tail expansion of

G(e) has the form

G xð Þ~ exp m1 {xð Þm2 1zj xð Þð Þð Þ ð9Þ
with m1v0, m2w0, where we also require that 1zj belongs to M{? 0ð Þ with limxp2‘ j(x)~0.

(ii) ~ff s�, yð Þ~{f
1=m2

2 yn2=m2 1zg yð Þð Þ, with 1zg [ M? 0ð Þ and limyp‘ g(y)~0.

Assumption 2B resembles Assumption 2A except for the fact that we now have exponential rather

than polynomial tails. Notice that Assumption 2B imposes more stringent conditions on the various

tails than Assumption 2A. Not only do we assume that the slowly varying functions in (the exponents

of) the tail expansions in fact have a limit, but we restrict the speed of convergence by, e.g. yg’(y) p 0

for y p ‘. Though our formulation is not as general as that in Theorem 3.3.26 of Embrechts et al.

(1997), we still cover a wide range of distributions that are commonly used in empirical exercises, e.g.

the normal and the gamma distributions of CreditMetrics and CreditRiskz, respectively. Part (ii) of

Assumption 2B is a modified balancedness condition, similar to part (ii) of Assumption 2A.

Assumptions 2A and 2B are easily applied to the standard credit risk models as well as to

straightforward extensions of these. We do this later in the paper by giving explicit examples. The

following theorem follows directly from Williams (1991), Theorem 12.13. For completeness, its proof is

given in the Appendix.

Theorem 1 Given Assumption 1 and C as defined in (5), we have that C~limnp‘ Cn exists a.s. and

C~P Sj < s�
�� f	 


ð10Þ
Note that C is still stochastic due to its dependence on f. We now study the extreme tail beha-

viour of portfolio credit losses C. The following theorems are proved in the Appendix.

Theorem 2 Let H be the distribution function of C. Given Assumptions 1 and 2A, C lies in the

maximum domain of attraction of the Weibull with tail index

a~f1m1=n1

meaning that

1{H cð Þ~ 1{cð Þa:L 1= 1{cð Þð Þ ð11Þ
with c tending to the maximum credit loss 1.

Theorem 2 directly reveals the extreme tail behaviour of credit losses. In particular, the fact that C

lies in the domain of attraction of the Weibull distribution implies that the distribution H(e) of C has

the form given in (11). The theorem further reveals how the tail index of the credit loss distribution (a)

depends on the tail indices of the latent factors ( f and ej) and on the factor model g. The dependence

on the factor model enters through f1, which is controlled by the balancedness condition (ii) in

Assumption 2A. If the tails of f and ej are both of the Fréchet type (Embrechts et al., 1997), the

theorem shows that the tail index of the credit loss distribution is directly proportional to the ratio of
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the tail index of f to that of ej. The tail index of C can thus be very small provided n1 is much larger

than m1. Put differently, the tails of the credit loss distribution may be very fat if the idiosyncratic risk

factor is much lighter tailed than the systematic risk factor. This has a straightforward economic

interpretation. If the tail of the common risk factor f is heavier than the tail of the idiosyncratic risk

factor ej, extreme falls in the variables Sj triggering default will primarily be induced by bad realizations

of f. Consequently, it is more likely that a large number of bonds in the portfolio default

simultaneously (due to extremely adverse common shocks) rather than separately (due to extremely

adverse idiosyncratic shocks). This clustering effect in individual defaults increases the likelihood of

extreme portfolio losses and corresponds with a slower rate of tail decay compared to the combination

of thin-tailed common and heavy-tailed idiosyncratic shocks.

We obtain a similar theorem for the case of exponential tails.

Theorem 3 Given Assumptions 1 and 2B, C lies in the maximum domain of attraction of a Weibull

with tail index

a~f2m1=n1

An interesting implication of this theorem is that the tail index of credit losses can be finite even if

the underlying risk factors f and ej are both thin-tailed, see also Lucas et al. (2001) and Figure 1 below.

To illustrate this result, consider two examples: the CreditMetrics model of Gupton et al. (1997),

and the CreditRiskz model of CreditSuisse as modified by Gordy (2000). First, consider the linear

factor model of CreditMetrics, Sj~bfzej, with f and ej both standard normally distributed and bw0,

such that Assumption 2B applies. We thus obtain n1~m1~21/2, and n2~m2~2. From the factor

model inversion ~ff s, eð Þ~ s{eð Þ
.
b it follows that f2~b22 and, thus, a~b22. This confirms the results

in Lucas et al. (2001). A higher systematic risk component (i.e. higher b) transforms into a lower tail

index of C, which implies that more systematic risk results in fatter tails for portfolio credit losses. For

CreditRiskz, the factor model reads Sj~ej/(2bf ), where ej is standard exponentially distributed, and

(2f ) has a gamma distribution with parameters c1 and c2. We have n1~21 and n2~1 for the

exponential, and m1~21/c2, m2~1, and j(y)~c2(12c1)ln(y)/y for the gamma (see Abramowitz and

Stegun, 1970 equation 6.5.32). It is easily checked that j yð Þ [ M? 0ð Þ. Furthermore, inverting the

factor model gives ~ff s, eð Þ~e= {bsð Þ, such that f2~(bs*)21. Therefore, following Theorem 3 the tail

index of portfolio credit losses is given by a~(bs*c2)21. Just as in the CreditMetrics specification, we

see that for the CreditRiskz specification a more dominant common risk component (higher b) results

in a lower rate of tail decline. In contrast to the CreditMetrics model, however, we also see that the

portfolio quality enters the tail index. This quality is measured by the magnitude of the default

threshold s*, which for this model specification is strictly positive. Portfolios with a higher quality level

will have a lower value for s*, and thus a higher tail index. In Section 4 we prove that also the

CreditMetrics model is affected by portfolio quality. In contrast to the CreditRiskz specification where

the effect is of first-order, portfolio quality only has a second-order effect in the CreditMetrics

specification (i.e. only affects the slowly varying function and not the tail index). This provides yet

another difference between the two modelling frameworks, see also Gordy (2000).

A graphical illustration of the analytic results in Theorems 2 and 3 is contained in Figure 1.

The figure presents credit loss densities for the linear factor model of CreditMetrics, slightly
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reparameterized as

Sj~r 1{2=m1ð Þ1=2
fz 1{r2

� �
1{2=n1ð Þ

	 
1=2
ej ð12Þ

For illustration purposes, we set r~0.15. Results are similar for other values of r between 0 and 1. We

further assume that f and ej follow a Student t distribution with degrees of freedom m1 and n1,

respectively. Note that the rescaled risk factors 1{2=m1ð Þ1=2
f and 1{2=n1ð Þ1=2ej now both have zero

mean and unit variance, as is common in the CreditMetrics framework. We set the probability of

default to 1%. The resulting credit loss densities are given in Figure 1 over various relevant regions of

the domain C [ 0, 1½ �. If n1, m1v‘, Theorem 2 applies, such that the tail index of C is given by a~m1/

n1. If n1, m1q‘, risk factors are normally distributed and the tail index of C is given by a~(12r2)/r2

(Lucas et al., 2001).

The first thing to note in Figure 1 are the middle plots. These reveal the typical shape of credit loss

distributions known in the literature. Due to the common dependence on f, defaults are correlated.

This in turn gives rise to a portfolio credit loss density that is right-skewed and has a fat right-hand

Fig. 1. Credit loss distributions with different tail indices. The figure contains the credit loss densities for a

homogeneous portfolio. The underlying factor model is linear, g( f, ej)~aefzbeej, with a~r 1{2=m1ð Þ1=2,

b~ 1{r2
� �1=2

1{2=n1ð Þ1=2, and r~0.15. All ej are identically distributed. The risk factors f and ej both follow

a standardized Student t distribution with m1 and n1 degrees of freedom, respectively. The default probability is

1%. The left-hand plots display the credit portfolio loss density’s behaviour in the extreme left-hand tail. The

middle plots display the behaviour in the middle of the support, and the right-hand plots give the extreme

right-hand tail behaviour. Note the different scaling of the axes, especially the horizontal axis in the left-hand

plots and the vertical axis in the right-hand plots.
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tail. More peculiar are the steeply decreasing and increasing shapes of the density in the extreme left-

hand (see left-hand plots) and right-hand tail (see right-hand plots), respectively. These characteristics

only show up in the plots if either the density of f or ej has polynomial rather than exponential tails.

This is due to the specific value of r chosen. If r2
w0.5, similar patterns can show up if both tails are of

the exponential type, e.g. normal. As the assumption of thin tails for f and ej has been predominant in

the literature, it is not surprising that these unconventional shapes of the credit loss density have not

been considered earlier. The peculiar shape of the densities can be understood as follows. Situations in

which all firms default together or do not default at all correspond to extremely negative and positive

realizations, respectively, of the systematic factor f. These situations are more likely to occur if the

distribution of f exhibits heavier tails than the idiosyncratic risk factor ej, because then extremely bad

realizations of f are less likely to be offset by extremely good realizations of ej.

The phenomena displayed in Figure 1 can also be illustrated using the analytical expression of the

credit loss density. From the proof of Theorem 2 in the Appendix, it follows that for a linear factor

model Sj~afzbej, this density H’(c) has the form

H 0 cð Þ~ b

a
:G

0 s�

a
{ b

a
F{1 cð Þ

� �
F 0 F{1 cð Þð Þ ð13Þ

where F ’, G’, and H’ are the derivatives of the distribution functions F, G, and H, respectively. If the

tails of f are lighter than those of ej, the numerator tends faster to zero for c tending to either 0 or 1

(and thus F21(e) tending to 2‘ or z‘). By contrast, if the tails of ej are lighter, the denominator tends

to zero at a faster rate. As a consequence, the density diverges to ‘ for both cQ0 and cq1. If both tails

are equally heavy, (13) shows that what matters at the extremes of the support is the size of b/a. For

example, for polynomial tails of f and ej that have the same tail index, it follows from (13) that the

density tends to a non-zero limit at the edge of its support if |b|v|a|.

The results so far also have a practical edge for credit risk management. The likelihood of extreme

credit losses is increased if the common risk factor has fatter tails than the idiosyncratic risk factor. As

it is generally difficult to reliably estimate the tail-fatness of f and ej from the empirical data that are

typically available, a more conservative approach than that based on normally distributed risk factors

can be warranted for prudent risk management. Especially in the upper quantiles of the credit loss

distribution, more probability mass might be concentrated than suggested by the normality assumption

for common and idiosyncratic risk (see also the numerical results in Lucas et al., 2001).

3. Heterogeneous bond portfolios

So far we considered the portfolio credit loss distribution for homogeneous portfolios and a one-factor

model governing defaults. We now extend the results to heterogeneous portfolios consisting of m

homogeneous groups. We use i as the index of group i, i~1, …, m. Each group consists of ni~ni (n)

companies with
Pm

i~1 ni~n. Notice also that for each company j there exists exactly one i~ij such that

this company belongs to group i. We now have a company/group specific factor model, such that for

all j~1, …, n it holds that

Sj~gi f , ej
� �
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for some i~1, …, m. We modify the assumptions from Section 2 accordingly. In order to avoid

uninteresting pathological situations in the present context we also make the assumption that the

relative sizes of the groups li nð Þ~ ni nð Þ
n

eventually stabilize. That is li~limnp‘ li (n) is assumed to exist

for all i.

Assumption 1’ The same as Assumption 1, except for the following modifications:

(i) The ej are still independent and are within each group identically distributed. The common

distribution function in group i is denoted by Fi.

(ii) The factor models gi are increasing in both arguments and the inverse functions
~ffi s, eð Þ and ~eei f , sð Þ exist and are well defined for all s, e, f in their relevant supports.

(iii) Unchanged.

(iv) There exists an index i [ 1, . . . , mf g and a constant K such that

lim
x?{?

Pm
i~1 li 1{Fi ~eei x, s�i

� �� �� �
1{Fi ~eei x, s�i

� �� � ~K > 0 ð14Þ

Assumption 2A’ Similar to Assumption 2A, except:

(i) Each Fi has a right-hand tail expansion as in (6), but with parameter n1i.

(ii) The function x . {~ffi s
�, xð Þ is regularly varying at infinity with index f1w0, so

{~ffi s
�, xð Þ~xf1Lf xð Þ, with Lf slowly varying.

Assumption 2B’ Similar to Assumption 2B, except:

(i) Each Fi has a right-hand tail expansion as in (6), but with parameters n1i, n2i, and n3i.

(ii) ~ffi s
�, yð Þ~{f

1=m2

2 iyn2=m2 1zg yð Þð Þ, with 1zg [ M? 0ð Þ and limyp‘ g(y)~0.

The main relaxations with respect to the previous set of assumptions concern the group-specific

factor models and distributions of the idiosyncratic risk components. Also note that the credit quality

as measured by s�i may differ across groups.

Assumption 1’ on the factor models all being increasing in f is more restrictive for heterogeneous

portfolios than for homogeneous portfolios. In particular, it is no longer always possible to meet this

assumption by an appropriate change of variables. As an example, consider two groups where one has

a factor model that is increasing in f, while the other factor model is decreasing in f. By changing

variables from f to f * to make the latter model increasing in f *, one makes the former model

decreasing in f *. Such situations are, however, of limited practical interest as they imply both positive

and negative correlation between companies’ surplus variables and macroeconomic conditions for

significant parts of the portfolio. Empirical work shows that these correlations are predominantly

positive, see Das et al. (2002).

Part (iv) of Assumptions 1’ is new and requires that for extreme common risk factor realizations f

one of the idiosyncratic tails dominates the other tails. Parts (ii) of Assumptions 2A’ and 2B’ now only

need to be satisfied for group i rather than for every group i~1, …, m. Note that the limit in (iv) exists
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if for all i

‘i~ lim
x?{?

li 1{Fi ~eei x, s�i
� �� �� �

1{Fi ~eei x, s�i
� �� �

exists and is finite. In that case we have K~
Pn

i~1 li‘i.

The assertion of Theorem 1 now takes a different form, which can be proved similarly. Different

from (10) we have the following formulation of portfolio credit losses:

C~
Xm
i~1

li:P gi f , eið Þ < s�i
�� f	 


~
Xm
i~1

li:Fi ~eei f , s�i
� �� �

ð15Þ

where we have replaced the firm index j of e and ~ee by the group index i. For each firm in group i, ei
follows the distribution Fi, and the ei are independent. The constants s�i determine the default

probability in group i. As said before, the constants li denote the (asymptotic) relative size of group i.

Alternatively, one can allow for different loan sizes or recovery rates between groups and incorporate

these in li. This does not affect the rate of tail decay, but may impact the upper endpoint of the

support of C. For simplicity, we do not consider this case here.

As can be seen from (15), only the groups with a positive li contribute to the asymptotic credit loss.

We now discard all bonds in group i’ for which li’~0. The resulting portfolio now contains n’~n-ni’(n)

bonds and the relative sizes of the groups become li0 n
0ð Þ~ ni n

0ð Þ
n0 . It is, however, fairly easy to see that

still limn’p‘ li’(n’)~li. Therefore Equation 15 is still valid for the smaller portfolio, since for the

original portfolio the i’-th group contributed nothing to the asymptotic credit loss. Henceforth we

assume a portfolio for which all lis are strictly positive.

We have the following theorem on the tail index of credit losses for heterogeneous portfolios. The

theorem is proved in the Appendix.

Theorem 4 Let Assumptions 1’ and 2A’ be satisfied, then C lies in the maximum domain of attrac-

tion of the Weibull with tail index

a~f1m1=n1i

We obtain a similar theorem for exponential tails.

Theorem 5 Let Assumptions 1’ and 2B’ be satisfied, then C lies in the maximum domain of attrac-

tion of the Weibull with tail index

a~f2m1=n1i

An important implication of Theorems 4 and 5 is that in order to characterize the extreme tail

behaviour of portfolio credit losses, we do not have to take the complete portfolio into account. Only

segment i is important to compute the tail index. In fact, the tail index is the same for a heterogeneous

portfolio compared to a homogeneous portfolio of the same size consisting of loans to group i only.

This immediately follows from the fact that the size of the investment in group i (li), does not enter the

expression for the tail index. To provide some further insight, we focus on the definition of i. Assume a

factor model that is identical across groups, gi( f, e) w g( f, e), but with the idiosyncratic risk factors

still allowed to have different distributions across groups. According to (14), i characterizes the group

that has the thickest right-hand tails for the idiosyncratic risk component. Thus, the group with the
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heaviest idiosyncratic tail dictates portfolio credit loss tail behaviour. In particular, the heavier this tail

compared to the tail of f, the lighter the tail of portfolio credit losses C; see also Frey and McNeil

(2001). The intuition for this result follows from the limiting approach taken. Idiosyncratic risk is

diversifiable and therefore not incorporated in C, which only depends on common risk f. If a part of

the portfolio has a strong idiosyncratic risk component, this part of the portfolio is less likely to be

pushed into default by movements in common risk only. In the extreme right-hand tail of credit losses,

all bonds in the portfolio have to default due to adverse common risk realizations only. As argued, the

most problematic cases in this respect are precisely the bonds in group i, which are more easily pushed

into default by idiosyncratic risk compared to common risk. Therefore, this group entirely determines

the tail behavior near the maximum credit loss.

4. Second-order tail expansion

In Section 2, we showed that the tail index of credit losses is only influenced by portfolio quality s* in

the CreditRiskz specification of Gordy (2000), and not in the CreditMetrics framework. In the present

section, we prove that credit quality does also influence the tail behaviour of credit losses in the

CreditMetrics framework, but through a different channel. We again focus on a homogeneous

portfolio and the linear factor model Sj~rfz 1{r2
� �1=2

ej with Gaussian risk factors. In order to

study the impact of changes in credit quality on portfolio credit losses in a CreditMetrics framework,

we consider a second-order tail approximation. In particular, we derive an expression for the slowly

varying function L(e) in (11) that is correct up to first order. In the Appendix, we prove the following

theorem.

Theorem 6 Given the homogeneous Gaussian linear factor model setting

Sj~rfz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
ej

for r [ {1, 1½ �, the distribution of C has a tail expansion for cq1 of the form

P C > c½ �~ 1{cð Þ 1{r2ð Þ=r2 :L 1= 1{cð Þð Þ ð16Þ
where L is a function that is slowly varying at infinity and that satisfies

L xð Þ~
r ln x2

� �� �1{3r2

2r2ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p exp {
s�ð Þ2

2r2
z

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln x2ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
2r2

" #
: 1zo 1ð Þð Þ ð17Þ

The theorem gives a more explicit form of the slowly varying function L(e) in the tail expansion.

Gathering the components of L(x) that depend on x, we have

L xð Þ! exp
1{3r2

2r2
ln ln x2

� �� �
z

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln x2ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
2r2

" #
ð18Þ
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The dominant term in L(x) as a function of xq‘ is therefore

exp
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln x2ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
2r2

" #
ð19Þ

First note that s*~W21(p) for a default probability p. For p less than 50%, the default threshold s*

will be negative. Moreover, s* is increasing in p. If s*v0, (19) is decreasing in x, because r2
ƒ1. The

smaller the default probability p, the faster the rate of decline of (19) in x. A higher level of portfolio

quality, i.e. a lower p and more negative s*, increases the rate of tail decline for credit losses. Therefore,

less far out in the credit loss tail, tails may appear thinner than suggested by the result in Theorem 3.

This effect, however, is only of second order. In the extreme tail, the slowly varying function is again

dominated by the factor 1{cð Þ 1{r2ð Þ=r2

in (16). This contrasts with the finding for the CreditRiskz

model in Section 2, where s* entered the tail index of credit losses directly.

5. Concluding remarks

In this paper, we followed a limiting approach to determining the distribution of aggregate portfolio

credit risk. Using a general (nonlinear) latent factor model, we decomposed credit risk into a systematic

and an idiosyncratic risk factor. The model allows for different rates of tail decay for the underlying

risk components. We proved that under general conditions the distribution of portfolio credit losses

exhibits a polynomially decaying tail. This is important for credit risk management.

We showed that the tail index of credit losses for homogeneous portfolios directly relates to the tail

indices of the systematic and idiosyncratic risk components, and to the functional specification of the

factor model. The results were illustrated by computing the tail decay rate of aggregate credit losses for

the CreditMetrics and CreditRiskz models, two of the most common credit risk portfolio models

available in the literature. This revealed a striking difference: the portfolio quality has a first-order

effect on the rate of tail decline under the specification of CreditRiskz as given in Gordy (2000), but

not under that of CreditMetrics.

Moreover, we showed that the tail index of portfolio credit losses is very small if the tail of the

systematic risk component is much heavier than the tail of the idiosyncratic risk component. In

particular, the density of credit losses may then be increasing towards the edges of its support. This

means that extreme credit losses may show up with a much larger probability than suspected on the

basis of a factor model with Gaussian systematic and idiosyncratic risk.

We generalized our analytical results to a heterogeneous portfolio set-up by allowing distributions

of idiosyncratic risk, default probabilities, and loan exposures to differ across subsets of loans in the

portfolio. The results turned out to be very similar to the homogeneous case. The tail thickness of

credit losses is determined by that part of the portfolio that has the heaviest idiosyncratic tail. In

particular, the credit loss tail shape of a heterogeneous portfolio is the same as that of a homogeneous

portfolio consisting solely of the bonds with the heaviest idiosyncratic tail.

We also investigated the effect of changes in credit quality as measures by the magnitude of the

default threshold. We found that portfolio quality affects credit loss tail behaviour rather differently in
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the CreditMetrics compared to the CreditRiskz framework. Whereas the portfolio quality directly

enters the tail index in a CreditRiskz setting, it only influences CreditMetrics portfolio losses indirectly

via the so-called slowly varying function.

References

Abramowitz, M. and Stegun, I. (1970) Handbook of Mathematical Functions, Dover, New York.

Altman, E. (1983) Corporate Financial Distress. A Complete Guide to Predicting, Avoiding, and Dealing with

Bankruptcy, Wiley, New York.

Bangia, A., Diebold, F., Kronimus, A., Schagen, C. and Schuermann, T. (2002) Ratings migration and the business

cycle, with application to credit portfolio stress testing, Journal of Banking and Finance, 26, 445–74.

Basle Committee on Bank Supervision (2001) The new Basel capital accord. Report, Bank of International

Settlements, Basle.

Bingham, N., Goldie, C. and Teugels, J. (1987) Regular Variation, Cambridge University Press, Cambridge.

Caouette, J., Altman, E. and Narayanan, P. (1998) Managing Credit Risk. The Next Great Financial Challenge,

Wiley, New York.

Carey, M. (1998) Credit risk in private debt portfolios, Journal of Finance, 53(7), 1363–87.

Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E. (1996) On the lambert w function,

Advances in Computational Mathematics, 5, 329–59.

Credit Suisse (1997) CreditRisk. Available at: http://www.csfb.com/creditrisk.

Das, S.R., Freed, L., Geng, G. and Kapadia, N. (2002) Correlated default risk. Technical report, Santa Clara

University.

Duffie, D. and Singleton, K. (1999) Modeling the term structures of defaultable bonds, Review of Financial Studies,

12, 687–720.
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Appendix: Proofs

Proof of Theorem 1: Consider the filtration defined by the s-fields F n~s f , e1, . . . , enð Þ and the

process M given by Mn~
Pn

j~1 jj, with jj~1 Sjvs�f g{P Sjvs�
�� f� �

. We show that M is a zero

mean martingale with respect to this filtration. To that end we have to show that E jnjF n{1½ �~0 for

all n§1. We compute, using that P(Snvs*| f ) is F n{1-measurable

E jnjF n{1½ �~E 1 g f , enð Þ<s�f g
��s f , e1, . . . , en{1ð Þ

	 

{P Sn < s�j fð Þ

~P g f , enð Þ < s�ð Þjs f , e1, . . . , en{1ð Þ{P g f , enð Þ < s�j fð Þ
Due to the assumed independence of f, e1, e2, …, the last two conditional probabilities are the

same and the martingale property follows.

Moreover, P Snvs�j fð Þ~P g f , enð Þvs�j fð Þ~P env
~e f , s�ð Þ

�� f� �
. Invoking the assumed indepen-

dence once more we can rewrite this as F ~ee f , s�ð Þð Þ. Notice that this is independent of n and we

therefore define C : ~P Snvs�j fð Þ~F ~ee f , s�ð Þð Þ. In the same vein one can compute var

jnjF n{1ð Þ~C 1{Cð Þv1 a.s. Hence, it follows from the strong law for martingales (Williams, 1991,

Theorem 12.14) that Mn

n
?0 a.s. Finally, since it holds that

Cn~
Mn

n
zC

the a.s. convergence of Cn to C follows.

Proof of Theorem 2: If H is the distribution functions of C, then we have for all c [ 0, 1ð Þ that
�HH cð Þ~1{H cð Þ~G �ff s�, F{1 cð Þ

� �� �
, since C~F ~ee f , s�ð Þð Þ and

�HH cð Þ~P C > c½ �~P F ~ee f , s�ð Þð Þ > c½ �~P ~ee f , s�ð Þ > F{1 cð Þ
	 


~P f < �ff s�, F{1 cð Þ
� �	 


~G �ff s�, F{1 cð Þ
� �� �

The result follows from the composition rule for regular varying functions, see Bingham et al.

(1987), Proposition 1.5.7. It states that the composition R10R2 of two regularly varying functions

(at infinity) R1 and R2 with indices h1 and h2 is regularly varying with index h1h2 if R2(x) p ‘ as

xp‘. To apply this proposition (two times) to the function H̄ one switches to the auxiliary func-

tion h defined by h xð Þ~G �ff s�, F{1 1{1=xð Þ
� �� �

. First we verify that xpF21(121/x))) is regularly

varying at infinity. It follows from Assumption 1 that F21 is well defined and that limxp‘

F21(121/x)))~‘. From Theorem 1.5.12 of Bingham et al. (1987) we obtain that this function is

regularly varying with exponent 21/n1. A twofold application of the composition rule is now justi-

fied under Assumptions 1 and 2A.
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Proof of Theorem 3: In the course of the proof we need certain properties of functions belonging

to the classes Ma hð Þ. We give these properties first. The following statements parallel Seneta

(1976), pp. 18, 19, and Bingham et al. (1987), Proposition 1.5.7. If x is increasing (with hw0) and

x [ M? hð Þ, then x{1 [ M? 1=hð Þ. Similarly, if x is decreasing (with hv0), then x{1 [ M0 1=hð Þ.
We also have that x [ Ma h1ð Þ and y [ Mb h2ð Þ with limxpb y(x)~a implies that x0y [ Mb h1h2ð Þ.
Furthermore, if x [ Ma hð Þ then xa [ Ma ahð Þ and if x [ Ma h1ð Þ and y [ Ma h2ð Þ, then

xy [ Ma h1zh2ð Þ.
We now start proving the theorem. The function w defined by w(x)~log F̄(x) (here F̄~12F) belongs

to M? n2ð Þ. It then follows that w21 belongs to M{? 1=n2ð Þ. For y p 2‘ we have

w{1 yð Þ~ y

n1

� 1=n2

Lw{1 yð Þ

As a consequence, we can write

�FF{1 tð Þ~F{1 1{tð Þ~ log t

n1

� 1=n2

LF{1 tð Þ

where LF{1 tð Þ~Lw{1 log tð Þ is so that limt?0 LF{1 tð Þ~1, since limxp‘ e(x)~0. Using the assumptions

on ~ff , we can write

~ff s�, F{1 1{tð Þ
� �

~{f
1=m2

2

log t

n1

� 1=m2

L
n2=m2

F{1 tð Þ 1z~gg tð Þð Þ

with ~gg tð Þ~g F{1 1{tð Þ
� �

~g log t
n1

� �1=n2

LF{1 tð Þ
� 

. Notice that ~gg tð Þ?0 for t?0. As a result we get

�HH 1{tð Þ~ exp ak tð Þ log tð Þ
with

a~
m1f2

n1

k tð Þ~LF{1 tð Þn2 1z~gg tð Þð Þm2 1z~jj tð Þ
� �

and

~jj tð Þ~j ~ff s�, F{1 1{tð Þ
� �� �

Notice that also ~jj tð Þ ? 0 for t ? 0.

In order to have that t . �HH 1{tð Þ is regularly varying at zero with coefficient a1 we have to prove

that for t p 0

log �HH 1{xtð Þ{ log �HH 1{tð Þ ? a log x

which amounts to

k txð Þ{k tð Þð Þ log tzk txð Þ log x ? log x
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Hence, we verify that

lim
t?0

k txð Þ~1

and

lim
t?0

k txð Þ{k tð Þð Þ log t~0 ðA1Þ

The first limit is obvious from the definition of k and the convergence of g and j. The second limit

will be treated by using properties of functions belonging to the relevant classes M hð Þ. We make the

substitutions y~log t and z~log x. Putting ‘ yð Þ~k eyð Þ we rewrite equation (A1) as

lim
y?{?

y ‘ yzzð Þ{‘ yð Þð Þ~0 ðA2Þ

Observe that

‘ yð Þ~Lw{1 yð Þn2 1zg w{1 yð Þ
� �� �m2

1zj ~ff s�, w{1 yð Þ
� �� �� �

Since w21(y)p‘ when yp2‘ we can draw the following conclusions, using the properties listed at the

beginning of the proof. The functions Lw{1 , 1zg 0 w{1 and 1zj ~ff s�, w{1 :ð Þ
� �� �

belong to M{? 0ð Þ.
Hence we find that also ‘ [M{? 0ð Þ. Next we invoke the mean value theorem to write

‘ yzzð Þ{‘ yð Þ~z‘0 yzz�ð Þ for some z* between zero and z. But then

y ‘ yzzð Þ{‘ yð Þð Þ~z y
yzz�

yzz�ð Þ‘0 yzz�ð Þ
‘ yzz�ð Þ ‘ yzz�ð Þ? 0. This shows that (A2) is valid and concludes the

proof of the theorem.

Proof of Theorem 4: Note that

P C > c½ �~P
Xm
i~1

li 1{Fi ~eei f , s�i
� �� �	 


< 1{c

" #
ðA3Þ

Notice that in (A3) we are interested in extreme events that are determined in terms of f. If c tends to

one, then the event {Cwc} can alternatively be expressed as { fvl}, where l tends to 2‘. What we

want to show is that the tail behaviour of C, which is determined by the tail behaviour ofPm
i~1 li 1{Fi ~eei f , s�i

� �� �	 

, is essentially determined by that of 1{Fi ~eei f , s�i

� �� �
. More precisely, we

show that for cq1, we have P C > cð Þ*P 1{Fi ~eei f , s�i
� �� �

v
1{c
K

� �
.

We use the following auxiliary result. Let h1 and h2 be two (measurable) increasing functions, such

that limxp‘ h1(x)/h2(x)~1. Let X be a random variable with distribution function FX that is such that

for all x one has FX(x)v1. Consider the random variables h1(X) and h2(X). If h2(X) has a regularly

varying tail at infinity, then also h1(X) has a regularly varying tail, with the same index as h2(X). A

similar statement holds for left tails.

Proof of the auxiliary result: Fix dw0 and choose x0 such that xwx0 implies
h1 xð Þ
h2 xð Þ{1
��� ���vd. Consider

then P(h1(X)wu), where u is sufficiently big, such that we must have Xwx0. Then we have

P h1 Xð Þ > uð ÞƒP h2 Xð Þ > u
1zd

� �
and P h1 Xð Þ > uð Þ§P h2 Xð Þ > u

1{d

� �
. Hence we have the double

inequality

P h2 Xð Þ > u
1{d

� �
P h2 Xð Þ > uð Þ ƒ

P h1 Xð Þ > uð Þ
P h2 Xð Þ > uð Þƒ

P h2 Xð Þ > u
1zd

� �
P h2 Xð Þ > uð Þ

Tail behaviour of credit loss distributions 355



Let hv0 be the index of regular variation of the right hand tail of h2(X). Using that h2(X) has a

regularly varying right tail, we then obtain that

lim sup u??
P h1 Xð Þ > uð Þ
P h2 Xð Þ > uð Þƒ 1zdð Þh

and

lim inf u??
P h1 Xð Þ > uð Þ
P h2 Xð Þ > uð Þ§ 1{dð Þh

Since this is true for all sw0, we conclude that

lim u??
P h1 Xð Þ > uð Þ
P h2 Xð Þ > uð Þ~1

But then

P h1 Xð Þ > utð Þ
P h1 Xð Þ > uð Þ ~

P h1 Xð Þ > utð Þ
P h2 Xð Þ > utð Þ

:P h2 Xð Þ > uð Þ
P h1 Xð Þ > uð Þ

:P h2 Xð Þ > utð Þ
P h2 Xð Þ > uð Þ

converges to th as u p ‘.

The auxiliary result can now be used with f instead of X and letting
Pm

i~1 li 1{Fi ~eei f , s�i
� �� �	 


take

the role of h1(X) and K 1{Fi ~eei f , s�i
� �� �� �

the role of h2(X).

Proof of Theorem 5: Similar to the proof of Theorem 4.

Proof of Theorem 6: Using the fact that for xQ2‘ we have W xð Þ~ xj j{1w xð Þ 1zO xj j{2
� �� �

, see

(26.2.13) in Abramowitz and Stegun (1970), we obtain for jQ0 that

P C > 1{j½ �~W
szW{1 jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
r

 !

*
w

szW{1 jð Þ
ffiffiffiffiffiffiffiffiffi
1{r2

p
r

� 
szW{1 jð Þ

ffiffiffiffiffiffiffiffiffi
1{r2

p�� ��
r

~ exp {
s2

2r2
{

sW{1 jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
2r2

 !
w W{1 jð Þ
� �
W{1 jð Þ
�� ��

" #1{r2

r2
W{1 jð Þ
�� �� 1{r2ð Þ=r2

szW{1 jð Þ
ffiffiffiffiffiffiffiffiffi
1{r2

p
r

����
����

* exp {
s2

2r2
{

sW{1 jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
2r2

 !
j½ �

1{r2

r2
W{1 jð Þ
�� �� 1{r2ð Þ=r2

szW{1 jð Þ
ffiffiffiffiffiffiffiffiffi
1{r2

p�� ��
r

ðA4Þ

Let ŴW xð Þ~w xð Þ= xj j for xv0. Then ŴW is strictly increasing on (2‘, 0) and

ŴW xð Þ~ w xð Þ
xj j ~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2px2 exp x2ð Þ

p u
ffiffiffiffiffiffi
2p

p
ŴW xð Þ

� �{2

~x2 exp x2
� �
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Replacing ŴW xð Þ by j, x by ŴW{1 jð Þ, and noting that the Lambert-W function W(e) (Corless et al.,

1996), is defined as

W xð Þ: exp W xð Þ½ �~x

we obtain directly thatffiffiffiffiffiffi
2p

p
ŴW xð Þ

� �{2

~x2 exp x2
� �

u x2~W
ffiffiffiffiffiffi
2p

p
ŴW xð Þ

� �{2
� 

: u

ŴW{1 jð Þ~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

ffiffiffiffiffiffi
2p

p
j

� �{2
� s

The Lambert W function satisfies the asymptotic approximation (for x p ‘)

W xð Þ~ ln xð Þ{ ln ln xð Þð Þzo ln ln xð Þð Þð Þ
(Corless et al., 1996), such that

ŴW{1 jð Þ~j;0
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln 2pj2

� �q
ðA5Þ

Substituting W21(j) in (A4) by (A5), we obtain the desired result.
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